Etenim in recta AE capiatur linea quam minima DE datæ longitudinis, sitq; DLF locus lineæ EMG ubi corpus versabatur in D; & si ea sit vis centripeta, ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E scribantur V & V + I, erit area ABFD ut V2, & area ABGE ut V2 + 2VI + I2, & divisim area DFGE ut 2VI + I2, adeoq; DFGE ÷ DE ut {2I × V + ½I} ÷ DE, id est, si primæ quantitatum nascentium rationes sumantur, longitudo DF ut quantitas 2I × V ÷ DE, adeoq; etiam ut quantitatis hujus dimidium I × V ÷ DE. Est autem tempus quo corpus cadendo describit lineolam DE, ut lineola illa directe & velocitas V inverse, estq; vis ut velocitatis incrementum I directe & tempus inverse, adeoq; si primæ nascentium rationes sumantur, ut I × V ÷ DE, hoc est, ut longitudo DF. Ergo vis ipsi DF vel EG proportionalis facit corpus ea cum velocitate descendere quæ sit ut areæ ABGE latus quadratum.